Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C36

Direct product G=N×Q with N=C22 and Q=C2×C36
dρLabelID
C23×C36288C2^3xC36288,367

Semidirect products G=N:Q with N=C22 and Q=C2×C36
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×C36) = C2×C4×C3.A4φ: C2×C36/C2×C12C3 ⊆ Aut C2272C2^2:(C2xC36)288,343
C222(C2×C36) = D4×C36φ: C2×C36/C36C2 ⊆ Aut C22144C2^2:2(C2xC36)288,168
C223(C2×C36) = C22⋊C4×C18φ: C2×C36/C2×C18C2 ⊆ Aut C22144C2^2:3(C2xC36)288,165

Non-split extensions G=N.Q with N=C22 and Q=C2×C36
extensionφ:Q→Aut NdρLabelID
C22.1(C2×C36) = C9×C8○D4φ: C2×C36/C36C2 ⊆ Aut C221442C2^2.1(C2xC36)288,181
C22.2(C2×C36) = C9×C23⋊C4φ: C2×C36/C2×C18C2 ⊆ Aut C22724C2^2.2(C2xC36)288,49
C22.3(C2×C36) = C9×C4.D4φ: C2×C36/C2×C18C2 ⊆ Aut C22724C2^2.3(C2xC36)288,50
C22.4(C2×C36) = C9×C4.10D4φ: C2×C36/C2×C18C2 ⊆ Aut C221444C2^2.4(C2xC36)288,51
C22.5(C2×C36) = C9×C42⋊C2φ: C2×C36/C2×C18C2 ⊆ Aut C22144C2^2.5(C2xC36)288,167
C22.6(C2×C36) = M4(2)×C18φ: C2×C36/C2×C18C2 ⊆ Aut C22144C2^2.6(C2xC36)288,180
C22.7(C2×C36) = C9×C2.C42central extension (φ=1)288C2^2.7(C2xC36)288,45
C22.8(C2×C36) = C9×C8⋊C4central extension (φ=1)288C2^2.8(C2xC36)288,47
C22.9(C2×C36) = C9×C22⋊C8central extension (φ=1)144C2^2.9(C2xC36)288,48
C22.10(C2×C36) = C9×C4⋊C8central extension (φ=1)288C2^2.10(C2xC36)288,55
C22.11(C2×C36) = C4⋊C4×C18central extension (φ=1)288C2^2.11(C2xC36)288,166

׿
×
𝔽